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Geodesic motion in infinite spaces of constant negative curvature provides for 
the first time an example where a basically quantum mechanical quantity, a 
ground-state energy, is derived from Newtonian mechanics in a rigorous, non- 
semiclassical way. The ground state energy emerges as the Hausdorff dimension 
of a quasi-self-similar curve at infinity of three-dimensional hyperbolic space H 3 
in which our manifolds are embedded and where their universal covers are real- 
ized. This curve is just the locus of the limit set A(F)  of the Kleinian group F 
of covering transformations, which determines the bounded trajectories in the 
manifold; all of them lie in the quotient C(A)\F, C(A) being the hyperbolic 
convex hull of A(F).  The three-dimensional hyperbolic manifolds we construct 
can be visualized as thickened surfaces, topological products I • S, I a finite open 
interval, the fibers S compact Riemann surfaces. We give a short derivation of 
the Patterson formula connecting the ground-state energy with the Hausdorff 
dimension ~ of A, and give various examples for the calculation of 8 from the 
tessellations of the boundary of H3, induced by the universal coverings of the 
manifolds. 

I N T R O D U C T I O N  

We consider three-dimensional Riemannian spaces of  infinite volume 
and constant negative curvature - 1/R 2. A typical class of such manifolds is 
that of smooth thickened surfaces: imagine a sphere with some handles 
attached, and imagine the material of which this surface is formed as thick. 
One gets a three-dimensional space with an interior and exterior boundary, 
topologically I • S, fibering over a finite interval L the fibers being compact 
Riemann surfaces of  genus g > 2 .  If  we take I open, i.e., if we remove the 
boundary, we can endow these manifolds with a metric of  constant negative 
curvature that gives rise to infinite non-Euclidean volume. 
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We will be concerned with the geometric shapes of the classical geodesic 
trajectories. There are bounded trajectories lying during their whole time 
evolution between t = - ~  and t = +oe (our spaces are geodesicaUy com- 
plete) in a non-Euclidean sphere of finite radius, and unbounded ones that 
tend either for t ~ + oc or t - - , -oe  to the boundary. In fact, the bounded 
trajectories occupy a three-dimensional, finite, convex domain C(A)\F; 
almost all of them lie dense in it. There exist countably many homotopy 
classes of closed loops, too, that are of crucial importance if one tries to 
get "classical information" about excited states via Selberg's trace formula 
(Hejhal, 1976; Hurt, 1983: McKean, 1972), but the trace will not be dealt 
with here. Bounded trajectories are more the exception than unbounded 
ones; in the sense of Riemann-Lebesgue measure on the sphere at infinity 
of hyperbolic space (cf. Section 1), almost all are unbounded. Nevertheless, 
there are enough to provide a square-integrable ground state for the Schr6d- 
inger operator, which is in general well separated from the continuous 
spectrum. 

The clue that relates the ground-state eigenvalue of the Schr6dinger 
operator on the manifold with the bounded trajectories is uniformization: 
taking H 3 as a model for the universal covering space (cf. Section 1), we 
realize the group of covering transformations as a Kleinian group F of 
M6bius transformations acting on H 3. We construct a concrete realization 
of the manifold in H3as a fundamental polyhedron F for F. The group F 
applied to F gives a polyhedral tiling of hyperbolic space. Accumulation 
points of tiles on the boundary of H 3 constitute the fractal quasi-self-similar 
limit set A of F (Apanasov, 1991; Krushkal et  al., 1986; Maskit, 1974; 
Sullivan, 1982). The quotient C(A)\F of the hyperbolic convex hull C(A) 
of A (Epstein and Marden, 1987), which contains the bounded trajectories, 
is just the intersection of C(A) and F with the face-identification of F 
imposed. In fact, A is the set of initial and end points of lifts of bounded 
trajectories into the universal cover (Tomaschitz, 1991, 1992a,b). 

On the other hand, the ground-state energy (of. Section 2) of the Schr6d- 
inger operator of quantized geodesic motion is connected with the Hausdorff 
dimension 6 of A via the formula E0 = ( - h 2 / 2 R Z m ) ( ~  - 1) 2 (Patterson, 1975, 
1976, 1987; Phillips and Sarnak, 1985; Sullivan, 1979). This formula pro- 
vides a simple example for the reconstruction of a quantum mechanical 
quantity, a ground-state energy, from classical mechanics, namely the set of 
bounded trajectories. 

In Section 1 and the Appendix we discuss briefly normal forms of spaces 
of constant curvature, i.e., fundamental polyhedra of Kleinian groups in 
hyperbolic space, their deformations, and the tessellations of their universal 
cover. In Section 2 we discuss some aspects of classical mechanics, bounded 
trajectories, convex hulls of limit sets, and the Schr6dinger equation in these 
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spaces, and sketch the derivation of the Patterson formula connecting energy 
and Hausdorff dimension. Section 3 is devoted to numerical examples: gener- 
ation of tessellations, their characteristic curves, their limit sets, and the 
calculation of the Hausdorff dimension. 

1. NORMAL FORMS OF SPACES OF CONSTANT CURVATURE: 
FUNDAMENTAL POLYHEDRA 

Three-dimensional spaces of constant curvature - 1/R 2 and their univer- 
sal covers are modeled on the upper shell of the Minkowski hyperboloid 
X 2 - -  2 2 2 Xl-  X2- X3 = - R  2, endowed with the Minkowski metric ds 2= dx 2 - d x  2. 
The isometry group of this space is the Lorentz group SO + (3, 1) (+ means 
here the subgroup that preserves the upper shell of the hyperboloid). We 
will use other isometric versions of hyperbolic space, the Poincar6 ball B 3 
and the half-space H3; we sketch them briefly here for self-containedness; 
for details see Ahlfors (1981), Beardon (1983), and Milnor (1982). 

B 3 is an open three-dimensional ball Ixl<R, endowed with ds 2= 
4(1-  [xl2/R2) -2 dx2; H 3 is the upper half-space of ~3, y3>0, with ds 2= 
R2y32 dy 2. In both spaces the conformal factor of the metric gets infinite at 
the boundary, the sphere S~ or plane C (compactified) at infinity. The 
geodesics in this geometry are in the H 3 model semicircles orthogonal to the 
complex plane, and the totally geodesic planes are hemispheres resting on 
the plane at infinity; in B 3 geodesics are arcs of circles orthogonal to S~, 
and the geodesic planes are caps of spheres orthogonal to S~o. 

The action of the Lorentz group on H 3 is realized as follows: SO+(3, 1) 
is isomorphic to S L ( 2 , C ) / {  4-1 }, the group of M6bius transformations in 
the complex plane: z ~ (az + b) / (cz  + d) ; (c~) eSL(2, C). Decomposing 
z --+ (az + b) / (cz  + d)  in four successive transformations z --+ z +d /e ,  z --+ c2z, 
z --+ - 1/z, z --+ z + a/c,  we see that it consists of reflections in circles or straight 
lines. The group action on C is now lifted to H 3 by reflecting points of H 3 
in hemispheres with these circles as base circles (Beardon, 1983). (A plane 
orthogonal to C also is a totally geodesic plane in H3.) The analytic formula 
for the group action in H 3 can easily be read off from the above 
decomposition: 

{(az + b) (cz + d)  + aOy~ Y3 
( 2 ,  Y3)  - '*  - - ~ -  , 

Icz + dl2 + lc[ y~ [cz + d~ + pcl2 y~ J 

where we used z = y l  +iy2. The group action in B 3 is more complicated 
(Ahlfors, 1981). 
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Hyperbolic manifolds are now constructed by identifying the faces of a 
non-Euclidean polyhedron Fin/_/3 with elements of the Lorentz group. First 
we realize the identification pattern of the base circles (e.g., Figure 2 or 
Figure 5) of the hemispheres on which the faces of the polyhedron lie in the 
complex plane. If we identify, as indicated in the figures, the boundary arcs 
PiPi+ 1 of domain f l ,  we get a surface of genus 5 (Figure 2) or 6 (Figure 5), 
i.e., topologically a sphere with 5 (6) handles attached. Likewise, if we 
perform the same identification of the sides QjQ~+ 1, the boundary of domain 
f2 that comprises the point at infinity of C, we get again a surface of genus 
5 (6). These two surfaces lying at infinity of hyperbolic space are the two 
boundary components of a three-dimensional manifold which is obtained 
by identifying the hemispheres with the lifted transformations. The domain 
lying above these hemispheres and Jq and J~ is a non-Euclidean polyhedron 
F with identified faces on the hemispheres and two free faces yq, f2. The 
identification gives a thickened surface of genus 5 (6) with f~ and f2 as 
exterior and interior boundaries (Figure 1), where the metric gets singular. 
Therefore, a particle cannot cross in a finite time from fl to f2 ; see (2.2). 
(In the B 3 model the ring of base circles lies on S~, and F is realized by 
placing spherical caps orthogonal to S~o onto them.) 

If we apply F, the group generated by the lifted transformations, to F, a 
tiling of H 3 results; the images F(F) tessellate the interior of the hemispheres, 
which is just the condition that the metric of H 3 fits smoothly on the identi- 
fied faces of F, inducing globally a metric of constant negative curvature on 
the manifold. H 3 appears as the universal covering space with F as the group 
of deck transformations that uniformizes the manifold, emerging as the 
quotient H3\F. In order that the F(F) constitute really a tessellation of H 3 
without holes and overlapping, the base circles have to fulfill certain relations 
among their centers and radii; cf. the Appendix. Only 12(g-  1) real param- 
eters (g is the genus of the fibers) of the circles (M;, ri) can be varied 
independently [deformation space (Bers, 1970)], giving rise to fundamental 
polyhedra that represent nonisometric manifolds, i.e., two polyhedra cannot 
be mapped onto each other by a lifted M6bius transformation that respects 
the identification of the faces. 

Figures 3, 4, 6, and 8 show tessellations of the complex plane induced 
by tilings F(F) of H 3. They are obtained by applying F to fl and f2, the free 
faces of F. The fractal curve in the figures comprises just the accumulation 
points of the images F(F) of the H3-tessellation, the limit set A(F) (cf., e.g. 
Lehner, 1964). In the plane at infinity of H 3, 1"(fl)  tessellates the interior 
(Figures 7 and 9) and f2 the exterior of this Jordan curve. Its Hausdorff 
dimension determines the ground state of the Laplace-Beltrami operator, 
the Schr6dinger operator for geodesic motion. 
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Fig. 1. Topological structure of the hyperbolic spaces corresponding to the identification 
pattern in Figure 2 : thickened surfaces of genus five, topological products of a finite interval 
and a compact Riemann surface. The metric gets singular at the interior and exterior boundar- 
ies, giving rise to infinite hyperbolic volume. 

2. CLASSICAL MECHANICS, CONVEX HULLS OF 
TRAJECTORIES, AND THE GEOMETRIC NATURE OF THE 
QUANTUM MECHANICAL GROUND-STATE ENERGY 

Geodesic motion in hyperbolic spaces is realized by projecting geodesics 
of the covering space H 3 (or B 3, respectively) into the manifold. Every arc 
of the semicircle that lies in an image )'(F), ~rsF, is projected back via ~,-1 
into F, the fundamental polyhedron. One can view the image of this covering 
projection as the intersection of F with all the F-images of the H 3 (or B3) - 
geodesic. The face-identification of F also gives the identification of the 
projected arcs, so that we get a smooth curve in the manifold. A particle 
moving with velocity v:=ds/dt=2(1-Jx[2/R2) -~ dx/dt along this curve 
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Fig. 2. Identification of the sides of the interior polygon (Pi-vertices) gives a surface of genus 
five, likewise the identification of the exterior polygon (Qi-vertices) in the extended complex 
plane: the interior and exterior boundaries of the manifolds; see also the caption of Figure 5. 

satisfies Newton's equations 

dv 1 
dt-R2 [x" v2-v  �9 (x" v)] (2.1) 

derived from the B3-metric ds2=4(1 -  Ix[2/R2) -2 dx 2 induced on F. We see 
immediately that Iv] is a constant of motion. 

From (2.1) we calculate the time t - to  that a particle needs to move 
from point x0 to x: 

1 Ix - x~ (2 .2 )  
sinh2 (~ ~ ( t - t ~  ~ (l_,xl2/RZ)(l_lxo[2/R2) 

It can never reach the boundary in a finite time. Increasing the curvature 
radius, R --+ ~ ,  we recover motion in flat space. (Note that ds 2 ---, 4 dx 2; we 
have to rescale lengths by 1/2.) 

I f  the end points of the semicircle that is projected do not lie in the limit 
set A(F), it intersects only finitely many polyhedra of the tessellation, and 
its projection consists of finitely many arcs, the first and the last touching 
for t = :~ ~ the plane at infinity: we get an unbounded trajectory. 

Bounded trajectories are obtained by projections of semicircles which 
have both initial and end point in the limit set. Such a semicircle intersects 
infinitely many F-images of F. The image of its projection consists of infin- 
itely many arcs, or accidentally finitely many which give rise to closed loops. 
All these arcs are uniformly separated from the plane at infinity by a finite 
Euclidean minimum distance. Note first that F leaves the limit set invariant. 
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Fig. 3. The faces of  the polyhedra of  the H3-tessellation lie on hemispheres placed on the 
circles. Every polyhedron also has two free faces at infinity, one in the interior, the other in the 
exterior of  the Jordan curve (6 = 1.323), which are bounded by the same circles. The base circles 
and face-identifying mappings of the fundamental polyhedron F from which the tessellation 
originates (Section 3) are depicted in Figures 13 and 2. With this identification Fis  topologically 
a thickened surface of  genus five that inherits the metric of H 3. 

Therefore F maps semicircles with initial and end point in A(F) again onto 
such semicircles. The complete image of a projection is just the intersection 
of F with all the F-images of the semicircle. Thus, it consists of arcs which 
lie on circles that intersect the hemispheres and have initial and end point 
in A(F). Because A(F) has a finite minimum separation from the boundary 
off~ and f2, which is determined by the base circles of the hemispheres (see 
Figures 2 4) and Figures 5, 6, and 8), it follows that the arcs lying above 
the hemispheres have a common finite minimum separation from the plane 
at infinity. The trajectory which they constitute is therefore bounded. 
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Fig. 4. The fundamental polyhedron of this tessellation is a continuous deformation of that 
in Figure 3 ; the induced metric gives again a manifold whose fibers are surfaces of genus five, 
but which is nonisometric to that in Figure 3. The Hausdorff dimension 6 of the Jordan curve, 
the set of accumulation points of the tiling, gives the ground-state energy of the Schr6dinger 
operator on the manifold. 8 = 1.307. 

We sketch briefly a picture of the hyperbolic convex hull C(A) of A(F),  
whose quotient C(A) \F  is the domain in which all bounded trajectories 
lie. C(A) is, analogous to the Euclidean case, the closure of the common 
intersection of all hyperbolic half-spaces containing A(F).  (A geodesic plane 
s e p a r a t e s  H 3 into two half-spaces.) Two points in C(A) can be joined by a 
geodesic lying in C(A); in particular, all lifts of the bounded trajectories, 
geodesics with initial and end points in A(F),  lie in C(A). C(A) is a compact 
three-dimensional domain, whose boundary consists of flat pieces, i.e., 
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Fig. 5. As in Figure 2 ; placing hemispheres on the circles, we get the fundamental polyhedron : 
the space above the hemispheres and the two free polyhedral faces J~ and f2 (compactified). 
The identification of the faces on the hemispheres gives the manifold, a thickened surface of 
genus six. 

domains that lie on geodesic planes, and bending lines, e.g., lines of intersec- 
tion of geodesic planes or lines where lines of intersection accumulate. To 
visualize this, it is very helpful to draw first the two-dimensional Euclidean 
convex hull of the limit sets in the figures. An extensive treatise on C(A) can 
be found in Epstein and Marden (1987). The intersection of C(A) with F 
gives via the face-identification of  F a realization of C(A)\F.  

Convexity properties are best studied in the Kleinian model of hyper- 
bolic geometry K 3 (Ahlfors, 1981 ; Beardon, 1983; Thurston, 1978), in which 
the geodesics are straight lines and the concept of convexity is the same as 
in Euclidean space. K 3 is again a ball Ix] < R, endowed with 

1 1 1 
d s  2 - d x  2 + (x .  dx) 2 (2.3) 

1 - j x l 2 / R  2 R 2 (1 - I x l 2 / R ~ )  ~ 

The isometry B 3 ~  K 3 is given by x ~ 2x/(1 + Ix12/R2) 2. It is the identity on 
the sphere at infinity So~ ; a geodesic in B 3 is mapped onto a straight line 
that has the same intersection points with S~. The geodesic planes bounding 
F are Euclidean disks resting on the same base circles as the spherical caps 
in B 3. The bounded trajectories are now projections of straight lines with 
initial and end point in A(F). C(A) is the Euclidean convex hull. 

We will now connect 3 with the ground-state eigenvalue of the Schr6d- 
inger operator on the manifold, thus deriving an exact relation between a 
substantially quantum mechanical quantity, which is even in principle not 
accessible by semiclassical methods, with a geometrical quantity 3, the 
Hausdorff dimension of A ( F )  
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Fig. 6. As in Figure 3 ; the fibers are now surfaces of genus six corresponding to the identifica- 
tion pattern in Figures 5 and 12. Such tilings present simultaneous uniformizations of two 
Riemann surfaces (Bers, 1970), the boundary components of the manifold. 3 =  1.312. 

First we construct a Hausdorff cover of A(F). We start with a ball 
b(m, r0) in F and apply F to it; in every image of F there lies therefore an 
image of b. The balls ~/(b) accumulate at the limit points. If y(b) lies close 
to So~, y(b) will have a Euclidean radius 

because of the conformal factor in the BKmetric. Since the balls ~,(b) accu- 
mulate at S~, their central projections from the origin onto S~ provide 
Hausdorff covers (Sullivan, 1979). If the balls are close to S~, the radii 
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Fig. 7. The interior of the Jordan curve in Figure 6. Quasiconformal deformations of the unit 
disk give rise to quasi-self-similar shapes; see the caption of Figure 9. 

rcp(7) of these projections are approximately the same as those of the balls. 
The convergence abscissa of 

vEF y~F 
(2.4) 

(s a complex parameter), is therefore the Hausdorff dimension fi of A(F) 
(~ means here only that the series have the same' convergence abscissa). 
More rigorous arguments, with minimal covers, etc., are given in Sullivan 
(1979). The Hausdorff dimensions of the limit sets in Figures 3, 4, and 6-9 
are calculated in Section 3. 

The convergence abscissa of (2.4) also determines the ground state. If we 
represent the manifold as a fundamental polyhedron F in B 3, Schr6dinger's 
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Fig. 8. Deformation spaces of  hyperbolic manifolds are inhabited by many interesting species, 
their degree of differentiation depending on the genus of the fibers; here a tiling obtained by a 
deformation of the manifold in Figure 6. ~ = 1.338. 

eigenvalue equation reads 

2m A83 + u = Eu (2.5) 

u subject to periodic boundary conditions on the identified faces of F, i.e., 
u(Ti" ) = u ( .  ) on the spherical caps identified by Ti. For the Ti generate F 
we have for all y e F ,  u()' - ) =u ( .  ) in B 3, i.e., u automorphic with respect to 
F. In (2.5) A~3 is the Laplace-Beltrami operator of B 3 and we have added 
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Fig. 9. The interior component of Figure 8. Every small piece of the boundary curve A(F) 
can be uniformly expanded to a standard size r0, and then mapped back into A(F) by a quasi- 
isometry Q (Ahlfors, 1966; McLaughlin, 1987; Sullivan, 1982), so that 

1 r o ix__y I <-IQ(x) - Q(y)I < f r o  I x - y [  
K r  r 

for all x, yeD(r)  ~ A(F ) ; here D(r) is a disk of radius r < ro centered at A(F). K is independent 
of D(r), and can be taken as a measure for the deviation from self-similarity (K= l). 

1 / R  2 so tha t  the con t inuous  spec t rum star ts  at zero. W i t h  the B3-metr ic  we 
calculate  

Ae3= 4 1 2 8 ~ 
R / [  1 

(2.6) 

Ae3 is the Eucl idean  Lap lace  opera to r .  
The  Green  funct ion  Gr(x ,  y) is ob ta ined  as usual  in per iod ic  b o u n d a r y  

B 3 
value p rob lems  by  per iod iz ing  the Green  funct ion GE (x, y) o f  the cover ing 

B3 
space B 3. The Green  funct ion GE (x, y) is defined (up to a no rma l i za t ion  
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constant) by 

[ - / '  ~ ] h 2 1 B~ 
L~m~AB3+~)+EIGE (x ,y )=0  if x ~ y  (2.7) 

and by requiring a pole for x = y and a decay as fast as possible for Ixl --* R. 
After introducing polar coordinates and variable separation in (2.7) 
(Elstrodt et al., 1983) one arrives at 

, & - - 2 ( R / ~ ) ( - - 2 m E ) I / 2 /  

G~:3(x, 0) = ~ - ~-~] (2.8) 

For R ~ oe we recover the Euclidean Green function; a rescaling of [xl is 
again necessary because of the factor 1/4 in (2.6) ; cf. also (2.2). 

The Green function Gr(x, y) of the manifold is given by 
B 3 Gre(x, y) = ~ Ge (7/x, y) (2.9) 

It is an analytic function of the complex variable E; its poles and branch 
cuts determine the energy spectrum. The real positive axis is a branch cut 
corresponding to the continuous spectrum; Gr(x, y) is analytic in the half- 
plane Re(E) < 0 with the exception of a finite number of poles (bound states) 
on the negative real axis [cf. Elstrodt et al. (1983) and Lax and Phillips 
(1982) for a detailed discussion of these spectral properties]. 

The convergence abscissa of the series representation (2.9) of Gr(x, y) 
gives the first pole (Elstrodt et al., 1983; Patterson, 1975, 1976, 1987) and 
thus the ground-state energy. For A(F) comprising the accumulation points 
of the orbit 7/x, ), e F, we have [~x I ~ R, and the first two factors in (2.8) are 
bounded and do not affect the convergence behavior of Gr(x, y). Thus, to 
determine the ground-state energy E0 it is enough to determine the conver- 
gence abscissa of the Poincar6 series 

h(x,s)= E ( 1-[~xl2~s (2.10) 
7~r R2 / 

which was shown in (2.4) to be the Hausdorff dimension ~ of A(F). Thus, 
we have ~=l+(R/h) ( -2mEo)  1/:, which is the formula given in the 
introduction. 

3. CHARACTERISTIC CURVES OF A TILING AND THE 
CALCULATION OF t~ 

Because we obtain A(F) by tessellating the plane with F-images of F, 
it is intuitively clear that ~ will depend on the number of tiles one needs to 
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get a "uniformly accurate" picture of  the curve. To make this quantitative, 
we use the B 3 model and calculate the hyperbolic distance of  a point x from 
the origin o as 

fol xl 1 + [xl/R 
d(o, x) = as = R log "1 - )xl/R (3.1) 

ds is of  course the B 3 line element. 
For 17o[--,R we have 

1 - ~ ~ c o n s t .  e x p [ - ~  d(o, 70)]  (3.2) 

Now we partition B 3 into shells Sk, k = 1 , . . . ,  ~ ,  of  hyperbolic thickness 
R, so that the kth shell has hyperbolic distance k .  R from the origin, and 
write the Poincar6 series h(x = o, s) in (2.10), whose convergence abscissa is 
just 5, as (Sullivan, 1979) 

h(x-----o,s)=k~ 1 ~ 1 L T ~  e-k~ (3.3) 

n(k) denotes the number of  F-images (orbit points) of  o in the kth shell, and 
~ means, as in (2.4), that the series have the same abscissa of  convergence. 
The last series in (3.3) will diverge at s =  3 if we assume asymptotically 
n(k) ..~ const �9 e ~k. [For a rigorous derivation of  this see Phillips and Sarnak 
(1985) and references therein.] Thus, we obtain 

k 

N(k) := ~ n(/) --~ const �9 e ak (3.4) 
/=1 

where N(k) denotes the number of  orbit points of  o in the ball B~ with 
hyperbolic radius k �9 R centered at o. N(k) is even meaningful for noninteger 
k. Using the formula (Beardon, 1983) 

2 cosh d(o, 70) = 1712:= lal 2 + ]b] 2 + Icl 2 + Idl 2 

(a, b, c, d are the coefficients of the SL(2, C)-matrix associated with 7), we 
see that N(k) is the number of  7 e F  which satisfy 1712<exp(k) for large k. 
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Note also that in every tile of the tessellation F(F) there lies exactly one F- 
image of o. 

Now we have a quantitative description of the uniformly accurate 
approximation of A(F), namely by drawing all N(k) tiles 7(F) which are 
created by a 7/that satisfies I),[2< exp(k), and letting k ~ oe. 

In order to carry out the tessellation, we partition the tiling into genera- 
tions by defining the first generation of tiles as those that have a vertex in 
common with F (F, the zeroth generation, is not contained in it), and gen- 
erally the nth generation as the tiles that have a vertex in common with the 
( n -  1)th generation and do not appear in a former one. The number of tiles 
in the generations grows exponentially. Formulas for the systematic creation 
of the tiles in every generation can be read off from the sequences (A3), 
(A4) in the Appendix. 

In Figures 10 and 11 we have drawn the characteristics of the tessella- 
tions in Figures 3, 4, 6, and 8, i.e., logarithmic plots of the distribution of 
the N(k) tiles whose generators satisfy I),12< exp(k), among the generations 
for fixed k. We see that the distributions are composed of a normal density 
which goes over into an exponential density. The characteristics of a given 
tiling lie in the same class, i.e., differ only by a scale transformation 
(Ck~(x) = a -1 Ck2(ax), a > O] if k is sufficiently large. Thus, the decay expon- 
ent as well as the quotient of variance and mean of the normal density 
are independent of k. Even the characteristics of filings that correspond to 
nonisometric but topologically equivalent manifolds lie in the same class as 
long as one starts with deformations of one and the same fundamental 
polyhedron as the zeroth generation. 

is calculated as the slope of k ~ log N(k) ~ 6k + const via the method 
of least squares. Because of the exponential increase, we can calculate N(k) 
only for rather small values of k, but as we see in Tables ! and II the 
correlation coefficients are very good, which means that we are very soon in 
the asymptotic regime of (3.4). Actually, Tomaschitz (1989) used a weighted 
Gaussian method, because larger k-values give better approximations to 
A(F), but in practice it turns out that the result depends more on the choice 
of the smallest (k, log N(k)) in the sample space than on the weighting 
function. So we prefer to use no weights and to test the dependence of the 
slope from the lowest (k, log N(k)), determining so the error estimate. 

The calculations for the limit set A(F) in Figure 3 are shown in Table 
I, for A(F) of Figure 8 in Table II: S(Figure 3)= 1.3234-0.002; S(Figure 
8) = 1.3385 4- 0.001. Analogous calculations for A(F) in Figures 4 and 7 give 
8(Figure 4) = 1300 4- 0.002; 6(Figure 7) -- 1.312 ~- 0.002. 

In Bessis and Handy (1986) an efficient method has been developed to 
calculate lower and upper bounds for the ground states of certain elliptic 
differential operators, which could provide an independent check of these 
calculations. 
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Fig. 10. Characteristics of a tiling determining the approach to the limit set : logarithmic plots 
of the number  Z(n) of tiles with generators 7 satisfying the selection criterion ]TI2<exp(k), 
versus the generations n of the tiling; (a) corresponds to Figure 3, (b) to Figure 4. 

4. CONCLUSION 

Geodesic motion on spaces of constant negative curvature is a challeng- 
ing example for the reconstruction of quantum mechanics from Newtonian 
trajectories in classically highly unstable systems [For the relativistic case 
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Fig. 11. As in Figure 10; (a) corresponds to Figure 6, (b) to Figure 8. The curves differ only 
by a scale transformation; their universal slope determines the rate of the exponential decay of 
the generations imposed by the selection criterion. 

�9 see Tomaschitz,  1991, 1992a,b]. On compact  spaces Selberg's trace formula 
establishes the relation between the whole energy spectrum, which is in this 
case discrete, and the homotopy  classes of  classical orbits (Hunt,  1983; 
McKean,  1972). On spaces of  infinite volume as considered here (compact  
fibers, no parabolic cusps), where there are only finitely many  discrete energy 
levels, probably only one (compare the degenerate case in the Appendix), 
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Table I. Calculation of the Hausdorff Dimension S of the Jordan 
Curve in Figure 3 via the Method of Least Squares ~ 

Correlation 
k N(k) S coefficient 

6.5 192 - -  - -  
7 364 1.2793 1 
7.5 728 1.3328 0.999732 
8 1432 1.3442 0.999870 
8.5 2746 1.3381 0.999924 
9 5224 1.3289 0.999924 
9.5 10030 1.3231 0.999936 

10 19690 1.3228 0.999957 
11 74052 1.3229 0.999974 

Correlation Correlation 
k 8 coefficient 6 coefficient 

7 . . . .  

7.5 1.3863 1 - -  - -  
8 1.3697 0.999975 1.3530 1 
8.5 1 . 3 4 7 7  0.999902 1.3276 0.999939 
9 1.3310 0.999871 1.3126 0.999932 
9.5 1 . 3 2 2 5  0.999898 1.3080 0.999959 

10 1.3223 0.999936 1.3126 0.999969 
II 1.3226 0.999964 1.3169 0.999979 

~The sample space consists of points (k, log N(k)), where N(k) is the 
number of tiles with a generator 7 satisfying 1~,12 < exp(k). The c~ and 
the correlation coefficient in the nth line are calculated with the first 
(smallest) n sample points. By increasing the sample space we diminish 
the fluctuations of the slope 6. By testing the dependence of c~ on the 
choice of the smallest sample point, we get the error estimate: c~ = 
1.323 :k 0.002. 

the Pat terson formula  provides the bridge between the b o u n d e d  trajectories 

and  the ground-s ta te  energy. 
I would like to emphasize that these results are ob ta ined  wi thout  the 

use of  phase space and  Hami l t on i an  dynamics.  The essential po in t  is always 
the global behavior  of  collections of  uns table  trajectories, which determines 
the homotopy  classes in the compact  case, and  the limit sets and  convex 

hulls in the case of  manifolds  with infinite volume as treated here. 

A P P E N D I X .  D E F O R M A T I O N S  O F  H Y P E R B O L I C  S P A C E S  

First  we give the condi t ions  which the base circles in Figures 12 and  5 

and  Figures 13 and  2, respectively, have to satisfy in order  that  F ( F )  is a 
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Table lI. Calculation of the Hausdorff Dimension c~ of the Jordan 
Curve in Figure 8 via the Method of Least Squares" 

Correlation 
k N(k) ~ coefficient 

6.5 196 - -  
7 392 1.3863 1 
7.5 752 1.3446 0.999840 
8 1462 1.3360 0.999921 
8.5 2900 1.3410 0.999954 
9 5562 1.3369 0.999967 
9.5 10976 1.3379 0.999979 

10 21386 1,3380 0.999986 
10.5 41880 1,3384 0.999990 
11 81442 1.3382 0.999993 
11.5 159522 1,3384 0.999995 

Correlation Correlation 
k g coefficient 6 coefficient . - 

7 . . . .  
7.5 1.3029 1 - -  - -  
8 1.3163 0.999983 1.3296 1 
8.5 1.3337 0.999937 1.3497 0.999963 
9 1.3309 0.999966 1.3376 0.999957 
9.5 1.3342 0.999977 1.3395 0.999978 

10 1.3354 0,999985 1.3393 0.999987 
10.5 1.3366 0.999989 1.3397 0.999992 
11 1.3367 0.999992 1.3391 0.999994 
11.5 1.3372 0.999994 1.3392 0.999996 

aAs Table I, S= 1.33854-0.001. 

tiling of a 3 or likewise B 3. The side-identifying mappings in Figures 2 and 
5 have to be chosen so that the indicated orientation of the base circles is 
respected; the exterior of one hemisphere is mapped onto the interior of the 
other. From the figures one can now read off the following sequences. 

In Fig. 5 : 
) - _ T1,2 

P1 TI P 4  ~ P3  T !  i~, P 2  ,T.! i P5  ' P l  

P6 ~ P33 T 2  T2,3 T 2-1 T 2-1 TI,2 -1 
P8 --'--+ P32 ~ P7 ~ P34 ' P6 

T3,4 T~ -I - T2,3-1 
p9 T__!P30 r3 pll ~ P 2 9 - - - - ~ P I o  r~ I p31 ~ e 9  

T 4 T 4'5 T 4-1 T4_I T3A- 1 (A1) 
P12 - ' ~  P27 24 P14 ) P26 ~ PI3 ' P28 ' P12 
PIs r~ P24 T2s' r5'6 T~-I - T4'sl 

' PIT ~ P23 ~ PI6 rzs j) P25 " Pls 
T6 T6 I T,!-I T5,6-1 

P2o ~ PI9 P =  ' P18 PI8 ~ P21 
and the same with Pi replaced by Q;. 
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Each of these sequences constitutes a cycle of vertices (Lehner, 1964); 
the cycles are disjointed. 

In Figure 2: 

T1-1 r~7 ~ T1, 2 
Pt ~ / ~  ~ P3 ~ P2 ~ P5 ~ P1 

P6 T2-r P29 ~ P8 T2,s r~-' T22-1 T1, 2-1 
' P28 ~ P7 ----* P30 ~ P6 

T3,4 T13-1 T23-1 T2,3 -1 
P9 ~ P26 ~ P11 ~ P25 ~ Plo ~ P27 ' P9 

(A2) 
T4,5 T4,6 T3,~ -1 

PI2 ~ P18 -'----*/~ - ' PI2 
T25-1 T4,5 -1 

PI3  T5 " P16 ~ P15 r~ i P14 ~ El7  ' PI3  

PI9 ~ P22 ~ e2t T6-1 T6~1 T4.6 -1 ---'-+ P20 ~ P23 ~ P19 

Note that every transformation maps four given points into four given 
points, whereas a M6bius transformation is already determined by the 
images of three points. It is easy to see, taking angle invariance into account, 
that the relations 

r"2o T~-'o T'1-1 o r~o Tl = i d , . . . ,  
(A3) 

T5'6-I c T26-'o TI 6-1o T6o T 6 = id 

suggested by (A1) and 

T"2o TFo rl 'o r 'o rl = id . . . . .  
(A4) 

T 4'6 lo T6-'o T6-'o T6-'o T 6 =id 

for (A2), are sufficient that F(F) gives a tiling of H 3. 
Thus, to get a fundamental polyhedron F that represents a hyperbolic 

manifold, the base circles must be chosen so that they can be identified by 
Mrbius transformations, and that these transformations satisfy relations 
like (A3), (A4). 

To construct such polyhedra, we realize the identification pattern in 
Figure 2 or Figure 5 in the unit disk as described in Section 6 of Tomaschitz 
(1989). We have now six cycles of vertices, each of them lying on a circle 
centered at the origin. By varying the radii, we satisfy the angle relations 
among the vertices and get finally a group F whose limit set A(F) is the 
unit circle. The convex hull C(A) of A(F) is degenerated to a surface, the 
hemisphere on the unit circle. Its quotient C(A)\F is a compact Riemann 
surface (of genus 6 in Figure 5 or genus 5 in Figure 2), a fiber of the manifold 
invariant under F. The ground state (E0 = 0) gets unstable; it lies at the 
lower edge of the continuous spectrum. 
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Deformations of these manifolds (Bers, 1970; Krushkal, 1979; Lax and 
Phillips, 1982; Lehto, 1987; Marden, 1977) that give rise to more generic 
spaces of constant negative curvature can be obtained by a succession of 
contractions and dilatations along the necks of the handle body (Thurston, 
1978). In Figure 5 the necks are identified by T 1'2, T 2'3, T 3'4, T 4'5, T5'6; in 
Figure 2 by T 1'2, T 2'3, T 3'4, T 4'5, Z 4'6. Figure 12 shows the final contraction 
and dilatation along neck T 1'2 and neck T 5'6 (cf. Figure 5) that give rise to 
the polyhedron in Figure 6. 

To carry out such deformations, we choose a M6bius transformation 
~' that leaves the side-identifying mapping TN of the neck invariant 
()'TN) '-1= TN). The neck divides the manifold into two components. We 
conjugate the transformation that are the identification mappings of one 
component by ~,; those of the other component we leave unchanged. The 
generator relations [e.g., (A3) or (A4)] are then again fulfilled. Because ?' 
commutes with TN, it has the same fixed points ~1, ~2. Therefore, if we 
choose ), as an elliptic transformation, it leaves the hemispheres identified 
by TN (which is hyperbolic) invariant. The phase ~o of its modul (Ford, 1951) 
determines the contraction or dilatation of F along the neck identified by 
TN. In Figure 13 we show the last two contractions along T 4'5, T 4'6 (Figure 
2), which give the final shape of the fundamental polyhedron in Figure 3. 

"ks 
ke~. 

t I 

\ ' .  ( ~ k2 N ! , 

Fig. 12. Final step in a sequence of deformations giving rise to the fundamental polyhedron 
of the manifold in Figure 7. The ~i denote the fixed points, ~0 the phase of elliptic trans- 
formations that generate contractions and dilatations along the necks of the manifold. 
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ks 

k2 ' ~Q 

I-+::W:~ . . . .  

Fig. 13. As in Figure 12; realization of the identification pattern of Figure 2; the side-identi- 
fying transformations now satisfy (A4). The hatched domain is the center of Figure 3. 
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